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Some merged basis set calculations are described in which the magnitude of the computational
labour is greatly reduced by using smaller Gaussian lobe bases for computing the 3- and 4-centre two-
electron integrals, the full basis being employed for all one-electron and one-and two-centre two-
electron integrals. The several merged bases that have been investigated have all performed exceedingly
well when total energy and some one-electron operator expectation values are used as criteria.

The performance with respect to dipole moment is not quite as impressive as for the other expecta-
tion values.

If present results can be taken as a general guide then it is questionable whether large Gaussian
basis calculations that do not make use of the merging procedure have any advantage to offset the
greater computing cost involved.

Es wird iiber eine Methode berichtet, die Computerzeit bei Rechnungen mit Gauffunktionbasis-
sitzen wesentlich zu verkiirzen, in dem man kleinere Siitze von GauBfunktionen fiir die 3- und 4-
Zentren-Zweielektronenintegrale verwendet, dagegen die gesamte Basis fiir alle Einelektronen- und
Ein- und Zweizentren-Zweielektronenintegrale.

Die untersuchten Basissiitze dieser Art gestatten eine gute Berechnung der Gesamtenergie und
der Erwartungswerte einiger Elektronenoperatoren. Allerdings tritt eine groBere Abweichung bei
der Berechnung des Erwartungswertes fiir das Dipolmoment auf. Wenn sich die dargelegten Resultate
als allgemeingiiltig erweisen, ist es fraglich, ob Berechnungen mit groBen GauBfunktionsbasissitzen,
die ohne diese ,, Verschmelzungs“-Prozedur durchgefithrt werden, einen Vorteil bieten, der die groBeren
Computerkosten rechtfertigt.

Description de calculs avec des bases gaussiennes tronquées ot le temps de calcul est réduit en
rutilisant que des bases plus petites pour les intégrales bi-électroniques 2 trois et quatre centres. Les
différentes bases tronquées employées donnent de bons résultats lorsque I'énergie et les valeurs moyennes
de certains opérateurs monoélectroniques sont pris comme critéres. Les résultats obtenus pour le
moment dipolaire sont moins bons.

Si Pon peut prendre les résultats présentés comme guide on peut se demander si emploi de
grandes bases non tronquées présente un avantage réel vu le prix du calcul.

Introduction

In recent years almost all “ab intio” calculations on polyatomic molecules [1]
have employed Gaussian function basis sets because the time-consuming two elec-
tron repulsion integrals reduce to simple analytical expressions with Gaussians [2].
It is well known that exponentials are solutions to the central field problem and
it is therefore not surprising that many more Gaussians than exponentials must
be used to achieve comparable accuracy. Because of the large number of Gaussians
which must be used, it has also been found necessary to “group” the basis functions
so that fewer parameters are left to vary in the SCF procedure.
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Hence due to the large number of integrals that must be calculated, the initial
speed advantage of Gaussians over exponentials is reduced.

It would seem that there are two alternatives available to reduce the time factor
in “ab initio” calculations using Gaussian functions. Firstly, one could use a
smaller number of Gaussians per group. This method has the advantage that there
are fewer integrals to calculated and therefore the time is reduced, but it also means
that all interactions, large and small, are being calculated with a less accurate
basis set. The second alternative, which would seem more attractive, is to use a
large basis set for the important interactions and a smaller set for the less important
interactions.

The ideals incorporated in these two alternatives have been investigated by
several workers [11-14] aiming to reduce the computational labour involved in
ab initio MO calculations employing Slater type orbitals. Pople and coworkers
[11, 12] have essentially used the first method in their gaussian expansion of
Slater type orbitals technique. McWeeny, Palmieri and Cook [13, 14] have per-
formed calculations in which they calculate all one electron integrals exactly using
Slater type orbitals and normal “C” function techniques, and then use a small
gaussian expansion to calculate all the repulsion integrals. Brown, Burden and
Williams [10] have pointed out that this method unnecessarily approximates
many repulsion integrals which are quite easily calculated using a Slater basis.

We have tested this second method by performing calculations employing
large Gaussian lobe basis sets [3] for all one-electron and one-and two-centre two-
electron integrals and a smaller lobe set for the three- and four-centre two-electron
integrals. Thus the largest integrals are calculated quite accurately while the large
number of smaller three- and four-centre repulsion integrals are calculated less
accurately but with greater speed.

This paper outlines the small basis sets used and the application of this method
to H,O, NH; and CH,.

Basis Sets

Lobe functions basis sets [3] have been used extensively over the last few
years and indications are that they lead to quite adequate values for total energy
[4], rotational barriers [ 5] and many one-electron properties [6]. The large basis
sets employed in the present calculations were those reported by Whitten [3] which
have been shown [7] to be very close to double zeta accuracy.

The small basis sets were obtained by least square fitting to the larger set using
the Fletcher-Powell minimization procedure [8]. One-, two- and three-component
fits were obtained or carbon, nitrogen, oxygen and hydrogen, and are listed,
together with their overlap with the corresponding large group, in Table 1 and
Table 2. If we represent a large basis set group function by ¢, and the corresponding
small group function by ¢, where

N
o= Z Cuv;

b= Zstyj N>n
E)
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Table 1
Number of Carbon Nitrogen Oxygen
compo- Exponent Coeffi- Overlap Exponent Coeffi- Overlap Exponent Coeffi- Overlap
nents in cient cient cient
group

Ss 1 252.4464 1.0000 0.980 345.6397 1.0000 0.980

52959 0.743t 7.3284  0.7424

IS 2 0.998 0.998
292976  0.3546 402677 0.3548
03016 1.0143 04314 10139

LS 2 0.993 0.993
6.2346 —0.0583 8.9961 —0.0569
03609 7.4168 0.5311  6.0892
(0.10) (0.10)

P 2 0.978 0.977
27976 1.0827 41248 09227
(0.07) (0.07)
1.1250 2.0408 1.6504 1.7212
(0.10) (0.10)

3 0.996 0.996
0.2264 10.4953 03273  8.6404
(0.07) 0.07)
71309 02213 10.1963  0.1977
(0.06) (0.06)

469.0962  1.0000

9.7325 0.7438

53.4459 0.3530
0.5907 1.0134

12.4582 —0.0552

0.7104 52574
(0.10)

56516 0.8110
0.07)

04140 52789
(0.10)

21500 2.2385
0.07)

13.5700  0.1856
(0.06)

0.979

0.998

0.992

0.974

0.996

Numbers in brackets represent the distance (a.u.) of the lobe centres from the nucles.

Table 2
No. components Hydrogen
Exponent Coefficient Overlap
2 0.5402 0.9268 0.989
6.2604 0.1577
3 0.3589 0.7563 0.998
2.0558 0.3319
21.5927 0.0328

and in the lobe representation for an S function

\3/4
?i=(‘2n&) CXP(_OCi"Z)

and for a P function

-1 2ai 3/4 2 2
7, =N T {exp(—a;r7) —exp(—o,;13)}

then the error in approximating ¢, by ¢, is given by

A:¢l—¢s‘
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Fig. 1. Least square fits to a five component function for Hydrogen, - - - two component fit, - - - - three
component fit, 4 = &, — §,, ¢, = large group function, &, =small group function, R = distance from
the nucleus
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Fig. 2. Least square fits to a five component function for Oxygen. ——- two component fit, - - - - three
component fit, 4 =, — @, ¢,=large group function, @, = small group function, R = distance from
the nucleus

One would expect that as n approaches N, 4 would be small in all regions of
space. Fig. 1 shows the reduction in 4 at various distances from the nucleus for
two- and three-component fits to the five-component lobe function for hydrogen
9] while Fig. 2 shows a similar reduction in A for two- and three-component fits
to five-component P lobe functions for oxygen. In all cases the greatest deviation
is experienced close to the nucleus and this, coupled with the fact that the large
group functions are also in errorin this region [3, 7], would indicate that these
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Table 3. H,O — Orbital energies

Molecular orbital Basis set
0(1222) H(3) O0(®1223) HB) 03435 H(5)

la, -—20.4787 —20.4423 —20.4579
2a, — 1.3410 — 1.3229 - 13216
1b, — 0.6940 — 0.6678 — 0.6809
3a, — 0.5492 - 0.5270 — 0.5379
1b, — 04928 -~ 04769 — 0.4844
Er, —75.9947 —75.9587 —75.9747

All energies in atomic units.

Table 4. NH, — Orbital energies

Molecular orbital Basis set
N(1222) H(3) N(1223) HQ(3) N (3435) H(5)
la, —15.4711 —154273 —15.4663
2a, — 1.1428 — 1.1209 — 1.1162
le — 0.6046 — 0.5737 — 0.6028
3a, — 0.3955 — 03751 — 0.4002
Erot —56.1454 —56.0880 —56.1418

All energies in atomic units.

small sets will probably give a poor representation of one-centre integrals and any
one-electron properties concerned with the nucleus (e.g. electric field gradient).

Following the notation of Whitten, our basis sets are composed of three S-type
groups (one short range (SS), one intermediate range (IS) and one long range (LS))
and three P-type groups. The IS and LS groups correspond approximately to
normal 1s and 2s atomic orbitals. The shorthand notation used to designate the
large basis sets for first row atoms is (3 4 3 5) meaning a three-component SS group,
a four-component IS group, a three-component LS group and a five-component
P group are used.

In this preliminary work we report calculations using basis sets (122 2) and
(122 3) on the heavy atoms and a three-component group for the hydrogen.

Discussion and Results

Orbital energies and total energies from calculations on H,O, NH; and CH,
employing the above small basis sets to approximate the 3- and 4-centre integrals,
are recorded in Tables 3, 4 and 5. Tables 6, 7 and 8 record several one electron
properties obtained from these calculations. For comparison purposes, the last
column of each table contains the results from “exact” calculations employing
Whitten’s large basis sets [3] for all integrals.

All calculations reported have been performed on a CDC 3200 computer using
programs written by one of us (BTH) in this department. The integral, SCF and
one electron properties programs have all been tested against data generously
supplied by J. L. Whitten and W. Fink.
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Table 5. CH, — Orbital energies

Molecular orbitals  Basis set

C(1222 HB) C(1223) H(3)  C (3435 H(5)

lay
2a,
1t,

ETot

—11.1750 —11.1693 —11.2108
— 0.9607 — 09599 — 09381
— 0.5101 — 05071 — 0.5411
—40.1074 —40.1008 —40.1672

All energies in atomic units.

Table 6. NH; — One electron properties

Property Basis set
N(1222) H(3) N(1223) H(3) N (3435) H(5)
i 2 2.54 2.67 2.31
0. b 1.116 1.184 1.143
0., — 2233 — 2367 — 2300
{x®) © 9.256 9.138 9.210
(2% 7.340 7.318 7.343
o 25.85 25.59 25.76
1
<—r—> © 19.994 20.040 20.010
N
g, MmN ¢ 354.9 355.7 355.2
1
<—> ¢ 5.365 5.349 5.376
r/u
od,H) ¢ 95.2 94.9 95.4
xgx(N) ¢ 2.67 2,65 3.32
12 (N) — 534 - 529 - 6.63
@D 1348 —1294 —128.6
12, (D) 296.2 285.7 288.3
x2..(D) —161.8 —156.3 —159.7
¢ 8 4.2° 4.3° 2.6°

* In Debye units.

® In units of 10~ 2% esu. cm?.

¢ In atomic units.

4 In p.p.m.

° In MHz. Q(N) taken as 1.47 x 10726 esu.cm?2.
f InkHz

& Axes.

z!
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The performance of both sets with respect to calculated total energy is very
good — the deviation from the value derived with the full Whitten set being 0.03
to 0.1 % error. The implication is that for energy calculations an excellent estimate
of the “double zeta” energy can be obtained with considerable computational
economy by use of the mixed Gaussian basis technique illustrated here.

It should be noted that in some of the reported calculations, because of under-
estimations in the approximated repulsion integrals, the merged basis gives a lower
energy than the “exact” calculation. As pointed out by Brown, Burden and
Williams [10] the variation theorem does not apply exactly in these merged
calculations and hence the method that yields numerically the lowest energy is
not necessarily the best.

Likewise values of {r 3> are virtually identical with those derived by “double
zeta” type STO calculations and seem superior to those obtained by the Brown-
Burden-Williams 3G method [10] for example. Similarly excellent values are
obtained for {r*) or quadrupole moments. However the performance with respect
to computed dipole moment is inferior to minimal basis set STO calculations (or
the virtually identical values obtained by the BBW-3G method [10]). This poorer
performance is already inherent in the Whitten set, the present simplified procedure
yielding values within 0.1 to 0.3 D of the Whitten values.

Quadrupole coupling constants appear to be much more sensitive to the
approximations made although this no doubt will depend on the molecule in

Table 7. H,O — One electron properties

Property Basis set
0(1222) H(3) 0(1223) H(3) 0O (3435) H(5)

u 2 248 2.63 2.50
0, b 1911 - 2013 - 1974
0, 1.962 . 2073 2,050
0., - 0.051 — 0059 - =075
(x) ° 5.194 5.187 5.187
G 7.377 7.265 7.296
(7% 6.337 6.284 6.311
) 18.91 18.74 18.79
<v1—> d 5.759 5.740 5.755
r/u
¢, (H) e 102.2 101.9 102.2
<»1—> d 23.519 23.588 23.545
r/o

¢?,(0) € 417.5 418.2 4179
+2.(0) f 17.18 16.51 17.00
xgy(O) — 13.89 — 13.46 — 16.25
x?,(O) - 329 — 3.04 - 075
22.(D) & 2283 —~221.8 —2230
xf,y,(D) 374.2 363.2 3629
22.(D) —170.2 —165.0 -176.0

¢ b 3.6° 3.7 2.6°
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2 Dipole moment in Debye units.
® Molecular quadrupole moments relative to the centre of mass of water in units of 10~ 26 esu, cm?
or Buckinghams.

1
0= — *2‘ Z (‘Pi|3rurﬂ - 5¢pr2|‘l’i>

1
+ 7 Z Zn(3RnaRnﬁ - 5¢3R:)

1 au. = 1.344911 x 10726 esu.cm?.

¢ Second moments in atomic units, relative to the centre of mass of water. 1 a.u. =0.280023 x 10~ 16

cm?

{ap>= z {wilrarg — 5.:;1"2W’i>-

¢ In atomic units, 1 a.u.=9.07618 esu.cm ™!

(), 5w

¢ Average diamagnetic shielding in p.p.m.

= ()
3me® \r/a
1
1775 <—> p.pm.
T/a

f Quadrupole coupling constant in MHz at oxygen nucleus

_ ¢Qadu _ €Oa[
=<t L5 (G,

rAurAﬁ - 5-:3 TA

.

o‘:V(A) =

2
3raatap— Oup?ia

.

A

3R,,R,s—~6,4R?

o
n(nZ*A) Rr?
= 2.3497215 x 102 Q,, 4,, MHz.

. electric field gradient in atomic units. Q(O) nuclear quadrupole moment taken as —2.4 x 1026
2
esu.cm?.
¢ Quadrupole coupling constants at deuterium in kHz. Q(D) nuclear quadrupole moment taken
as 0.2796 x 10726 esu. cm?.
b Molecular axes.
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Table 8. CH, — One electron properties

Properties Basis sets
C(1222) H(3) C(1223) H(3) C (3435 H(S)
(% 2 11.88 11.87 11.93
oty 35.65 35.61 35.79
. .
<—r—> a 16.697 16.703 16.681
c
1 (C) b 296.4 296.5 296.1
1
<~r—> 2 4.883 4.881 4.908
H
(Y ® 86.7 86.6 87.1
r2(D) ¢ 227.5 226.6 2314
2 In atomic units.
b In p.p.m.
¢ In kHz.

question. For the three molecules tested, the quadrupole coupling constants for
deuterium are relatively insensitive to the approximations made. This result is
expected since the field gradient at deuterium is primarily due to the influence of
neighbouring atoms and, therefore, will be less sensitive to changes in the basis set.

At heavy atoms one expects the field gradient to be very dependent on the
representation of the charge density about the nucleus and therefore to be much
more sensitive to changes in the basis set used. The results indiacte that the ap-
proximations employed in this work have a large effect on the coupling constants
for oxygen and further investigation is in progress to ascertain whether this
poorer representation of the heavy atom charge density is generally observed or
unique to the water molecule.

‘We have only reported calculations in which the (1 22 2) and (1 2 2 3) basis sets
were used for the multicentre repulsion integrals although calculations using the
sets(2222),(2223),(1212)and (1 2 1 3) have been completed. Our investigations
indicate that changes in the size of the S groups affect the calculated properties
much less than when the size of the P group is altered. In view of the substantial
increase in computer time when the (1 2 2 3) set is employed, we propose to use
the (1 2 2 2) set in future investigational work.

For the exploratory calculations described here, employing small molecules
where the 3- and 4-centre integrals do not overwhelmingly dominate the computing
time, we find that the percentage reduction in time by using the merging procedure
is almost equal to the percentage of non-zero 3- and 4-centre integrals. Thus in
ab initio calculations on large polyatomic molecules one could expect up to a
50 percent time reduction if the method described here were used.

Provided that the performance found here is maintained in calculations on
larger molecules, this time reduction, coupled with the excellent correspondence of
results with those from the full calculations, would make it difficult to justify the
much greater computational costs of SCFMO calculations using large Gaussian
lobe sets without the use of smaller basis sets for 3- and 4-centre integrals.
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